Extensions 1→N→G→Q→1 with N=C2xC22:C4 and Q=C10

Direct product G=NxQ with N=C2xC22:C4 and Q=C10
dρLabelID
C22:C4xC2xC10160C2^2:C4xC2xC10320,1514

Semidirect products G=N:Q with N=C2xC22:C4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC22:C4):1C10 = C5xC24:3C4φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):1C10320,880
(C2xC22:C4):2C10 = C5xC23.23D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):2C10320,887
(C2xC22:C4):3C10 = C5xC24.3C22φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):3C10320,891
(C2xC22:C4):4C10 = C10xC23:C4φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):4C10320,910
(C2xC22:C4):5C10 = C5xC22.11C24φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):5C10320,1520
(C2xC22:C4):6C10 = C5xC23:2D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):6C10320,893
(C2xC22:C4):7C10 = C5xC23.10D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):7C10320,895
(C2xC22:C4):8C10 = C10xC22wrC2φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):8C10320,1523
(C2xC22:C4):9C10 = C10xC4:D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):9C10320,1524
(C2xC22:C4):10C10 = C10xC22.D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):10C10320,1526
(C2xC22:C4):11C10 = C10xC4.4D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4):11C10320,1528
(C2xC22:C4):12C10 = C5xC23:3D4φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):12C10320,1536
(C2xC22:C4):13C10 = C5xC22.32C24φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):13C10320,1540
(C2xC22:C4):14C10 = C5xD4:5D4φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):14C10320,1548
(C2xC22:C4):15C10 = C5xC22.45C24φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4):15C10320,1553
(C2xC22:C4):16C10 = D4xC2xC20φ: trivial image160(C2xC2^2:C4):16C10320,1517

Non-split extensions G=N.Q with N=C2xC22:C4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xC22:C4).1C10 = C5xC23:C8φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4).1C10320,128
(C2xC22:C4).2C10 = C5xC23.9D4φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4).2C10320,147
(C2xC22:C4).3C10 = C5xC23.7Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).3C10320,881
(C2xC22:C4).4C10 = C5xC23.34D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).4C10320,882
(C2xC22:C4).5C10 = C5xC23.8Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).5C10320,886
(C2xC22:C4).6C10 = C5xC24.C22φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).6C10320,889
(C2xC22:C4).7C10 = C5xC23.11D4φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).7C10320,898
(C2xC22:C4).8C10 = C5xC23:Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).8C10320,894
(C2xC22:C4).9C10 = C5xC23.Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).9C10320,897
(C2xC22:C4).10C10 = C5xC23.4Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).10C10320,900
(C2xC22:C4).11C10 = C10xC22:Q8φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).11C10320,1525
(C2xC22:C4).12C10 = C10xC42:2C2φ: C10/C5C2 ⊆ Out C2xC22:C4160(C2xC2^2:C4).12C10320,1530
(C2xC22:C4).13C10 = C5xC23:2Q8φ: C10/C5C2 ⊆ Out C2xC22:C480(C2xC2^2:C4).13C10320,1545
(C2xC22:C4).14C10 = C22:C4xC20φ: trivial image160(C2xC2^2:C4).14C10320,878
(C2xC22:C4).15C10 = C10xC42:C2φ: trivial image160(C2xC2^2:C4).15C10320,1516

׿
x
:
Z
F
o
wr
Q
<